3,722 research outputs found

    An Approximation to the Cross Sections of Z_l Boson Production at CLIC by Using Neural Networks

    Full text link
    In this work, the possible dynamics associated with leptophilic Z_l boson at CLIC (Compact Linear Collider) have been investigated by using artificial neural networks (ANNs). These hypotetic massive boson Z_l have been shown through the process e+e- -> M+M-. Furthermore, the invariant mass distributions for final muons have been consistently predicted by using ANN. For these highly non-linear data, we have constructed consistent empirical physical formulas (EPFs) by appropriate feed- forward ANN. These ANN-EPFs can be used to derive further physical functions which could be relevant to studying Z_l.Comment: 9 pages, 8 figure

    Excited muon searches at the FCC based muon-hadron colliders

    Get PDF
    We study the excited muon production at the FCC based muon-hadron colliders. We give the excited muon decay widths and production cross section. We deal with the μpμqμγq\mu p\rightarrow\mu^{\star}q\rightarrow\mu\gamma q process and we plot the transverse momentum, rapidity and invariant mass distributions of final state particles to get the discovery cuts. By using discovery cuts, we get the mass limits for excited muons. It is shown that the discovery limits on the mass of μ\mu^{\star} are 2.2 TeV, 5.9 TeV and 7.5 TeV for μ63\mu63-FCC, μ750\mu750-FCC and μ1500\mu1500-FCC, respectively.Comment: 13 pages, 10 figures, 3 tables, version of published in Adv. High Energy Physic

    An artificial neural network application on nuclear charge radii

    Full text link
    The artificial neural networks (ANNs) have emerged with successful applications in nuclear physics as well as in many fields of science in recent years. In this paper, by using (ANNs), we have constructed a formula for the nuclear charge radii. Statistical modeling of nuclear charge radii by using ANNs has been seen as to be successful. Also, the charge radii, binding energies and two-neutron separation energies of Sn isotopes have been calculated by implementing of the new formula in Hartree-Fock-Bogoliubov (HFB) calculations. The results of the study shows that the new formula is useful for describing nuclear charge radii.Comment: 7 pages, 3 figure

    The design of single allocation incomplete hub networks

    Get PDF
    Cataloged from PDF version of article.The hub location problem deals with finding the location of hub facilities and allocating the demand nodes to these hub facilities so as to effectively route the demand between any origin–destination pair. In the extensive literature on this challenging network design problem, it has widely been assumed that the subgraph induced by the hub nodes is complete. Relaxation of this basic assumption constitutes the starting point of the present work. In this study, we provide a uniform modeling treatment to all the single allocation variants of the existing hub location problems, under the incomplete hub network design. No network structure other than connectivity is imposed on the induced hub network. Within this context, the single allocation incomplete p-hub median, the incomplete hub location with fixed costs, the incomplete hub covering, and the incomplete p-hub center network design problems are defined, and efficient mathematical formulations for these problems with Oðn3Þ variables are introduced. Computational analyses with these formulations are presented on the various instances of the CAB data set and on the Turkish network. 2009 Elsevier Ltd. All rights reserved

    Multimodal hub location and hub network design

    Get PDF
    Cataloged from PDF version of article.Through observations from real life hub networks, we introduce the multimodal hub location and hub network design problem. We approach the hub location problem from a network design perspective. In addition to the location and allocation decisions, we also study the decision on how the hub networks with different possible transportation modes must be designed. In this multimodal hub location and hub network design problem, we jointly consider transportation costs and travel times, which are studied separately in most hub location problems presented in the literature. We allow different transportation modes between hubs and different types of service time promises between origin–destination pairs while designing the hub network in the multimodal problem. We first propose a linear mixed integer programming model for this problem and then derive variants of the problem that might arise in certain applications. The models are enhanced via a set of effective valid inequalities and an efficient heuristic is developed. Computational analyses are presented on the various instances from the Turkish network and CAB data set

    A tabu-search based heuristic for the hub covering problem over incomplete hub networks

    Get PDF
    Cataloged from PDF version of article.Hub location problems deal with finding the location of hub facilities and with the allocation of demand nodes to these located hub facilities. In this paper, we study the single allocation hub covering problem over incomplete hub networks and propose an integer programming formulation to this end. The aim of our model is to find the location of hubs, the hub links to be established between the located hubs, and the allocation of non-hub nodes to the located hub nodes such that the travel time between any origin–destination pair is within a given time bound. We present an efficient heuristic based on tabu search and test the performance of our heuristic on the CAB data set and on the Turkish network

    Compensation of B-L charge of matter with relic sneutrinos

    Full text link
    We consider massless gauge boson connected to B-L charge with and without compensation to complete the investigation of the gauging of B and L charges. Relic sneutrinos predicted by SUSY and composite models may compensate B-L charge of matter. As a consequence of the possible compensation mechanism we have shown that the available experimental data admit the range of the B-L interaction constant, 10^{-29} < {\alpha}_{B-L} < 10^{-12}, in addition to {\alpha}_{B-L} < 10^{-49} obtained without compensation.Comment: 6 page

    Microwave sintering of SiAlON ceramics with TiN addition

    Get PDF
    α-β SiAlON/TiN composites with nominal composition of α:= β25:75 were fabricated by microwave sintering. The effect of titanium nitride addition on the phases, microstructure, microwave absorption ability and mechanical properties (Vickers hardness and fracture toughness) of the SiAlON-based composites were studied. Finite Difference Time Domain (FDTD) software was used for the numerical simulation in order to assess the most suitable experimental setup. Sintering trials were performed in a single mode microwave furnace operating at 2.45 GHz and a power output of 660W, for a reaction time of 30 min. SiC blocks were used as a susceptor to accelerate the microwave processing by hybrid heating, with reduced heat losses from the surface of the material of the α- βSiAlON/TiN composites. The optimum comprehensive mechanical properties, corresponding to a relative density of 96%, Vickers hardness of 12.98 ± 1.81 GPa and Vickers indentation fracture toughness of 5.52 ± 0.71 MPa.m1/2 were obtained at 850°C when the content of TiN was 5 wt.%
    corecore